Comparisons of reproductive success between hatchery and natural fish: Current research and perspectives

April 28, 2020

- · Ilana Koch
- · Maureen Hess
- · Shawn Narum

Major Decline in Salmonid Abundance in Columbia River

Returning Columbia River salmon (chinook, steelhead, sockeye, coho)

Tribes and Hatchery Risks

- "The tribes recognize that there is significant risk to wild fish associated with the production of hatchery fish."
- "The job at hand is to manage that risk, with sound hatchery practices."
- "The tribes insist that hatcheries must remain a tool to benefit recovery of imperiled wild stocks and help rebuild populations for both reproduction and harvest."
- "As long as we have dams we'll have hatcheries to provide mitigation for heavy losses."

Source: Paul Lumley, CRITFC executive director, 2008-2016

Management of Hatchery Programs

- Supplementation Prevent extirpation, rebuild natural production (integrated)
- Reintroduction Restore extirpated populations (outside stocks, integrated)
- Harvest augmentation Fish for harvest (often segregated)

Two different management approaches

Integrated Supplementation Programs

- Supplementation Prevent extirpation, rebuild natural production (integrated)
 - Proportion of natural-origin fish in broodstock and hatchery-origin fish on spawning grounds varies by program and year
 - Intended to maintain diversity necessary for long-term persistence
 - Domestication expected to decrease with high proportion of naturalorigin broodstock

The Role of Genetic Sampling in Supportive Breeding

- Genetic sampling can provide insight into numerous individual and population-level assessments:
 - Diversity within and among populations
 - Connectivity among populations
 - Genes underlying traits (i.e. migration timing)
 - Parentage Analyses (i.e. Parentage Based Tagging; PBT)
- Parentage analyses can provide insight into fitness differences (reproductive success; RS) between hatchery- and natural-origin fish.

Relative Reproductive Success (RRS)

$$\mathbf{RRS} = \frac{\text{Avg # offspring (Hatchery origin)}}{\text{Avg # offspring (Natural origin)}}$$

Equal Fitness

$$\mathbf{RRS} = \frac{2 \text{ offspring (Hat.)}}{2 \text{ offspring (Nat.)}} = \mathbf{1.0}$$

Lower Fitness

$$RRS = \frac{1 \text{ offspring (Hat.)}}{2 \text{ offspring (Nat.)}} = 0.5$$

Studies In Salmonids and Risks to Natural-Origin Fish

· Steelhead

- Lower success of hatchery-origin compared to natural-origin fish¹
- Success of natural-origin fish reduced when mating with hatchery-origin fish¹
- Natural-origin broodstock produce offspring that reproduce better in nature²

· Coho

- No differences in success between hatchery- compared to natural-origin fish³
- Lower success of hatchery-origin compared to natural-origin fish, except for jacks⁴

Chinook

- Lower success of hatchery-origin compared to natural-origin fish^{5,6}
- More generations in hatchery leads to lower success in the wild for males⁶
- No effect detected when natural-origin fish mate with hatchery-origin fish⁵

Summary: Results vary by species and hatchery program

¹Kostow et al. 2003; McClean et al. 2003, 2004; Araki et al. 2007, 2009; Berntson et al. 2011

²Ford et al. 2016

³Ford et al. 2006; O'Malley et al 2015

⁴Theriault et al. 2011

⁵Hess et al. 2012; Janowitz-Koch et al. 2019

⁶ Williamson et al. 2010; Ford et al. 2012; Anderson et al. 2013; Evans et al. 2015

Spring/Summer Chinook salmon (Oncorhynchus tshawytscha)

- Threatened or endangered in many locations
- Johnson Creek: spawning tributary in interior watershed of Salmon River Basin (Idaho)
 - All fish are passed above the weir for natural spawning.
 - Only natural-origin fish are used for broodstock.

Methods: Sample Collection

- Fin tissue sample collected and data recorded from all fish at Johnson Creek weir (~93% of spawning adults)
- Samples genotyped for parentage analyses
- Tissue samples from approximately 14,500 fish between 1998-2016

• 19 collection years and 10 brood years examined in this study: 2002-2011

Questions

Evaluate the long-term effects of supplementation over two full generations in Johnson Creek:

- 1. Does the hatchery boost population abundance?
- 2. Do hatchery-origin fish demonstrate lower (or higher) reproductive success than natural-origin fish?
- 3. What are some of the key factors affecting variation in reproductive success?

Result 1: Demographic Boost

• First generation:
Broodstock produced ~5
times the number of
returning adult
offspring compared to
natural spawners
(average = 4.52).

• Second generation:
Broodstock produced ~3
times the number of
returning adult grandoffspring compared to
natural spawners
(average = 2.56).

Does the hatchery boost population abundance? YES

Result 2a: Relative Reproductive Success- All Sampled Adults

 Trend toward lower reproductive success for hatchery-origin fish, especially for:

• Females: 2007

• Males: 2002 & 2008

• **Jacks:** 2003 & 2008

Do hatchery-origin fish exhibit lower reproductive success than natural-origin fish? In certain years YES, but OVERALL, NO.

Janowitz-Koch, I, et al. 2018. Evol App.

Result 2b: Relative Reproductive Success- Single Generation Crosses

- No difference in reproductive success of Hatchery-origin x Natural-origin crosses compared to Natural-origin x Natural-origin crosses.
- No difference in reproductive success of Hatchery-origin x Hatchery-origin crosses compared to Natural-origin x Natural-origin crosses.

Do hatchery-origin fish impact the reproductive success of natural-origin fish? **NO**

Result 3: The Impact of Size on Reproduction

- As body length increases, reproductive success also increases.
- In some years, hatchery-origin fish are smaller and have lower reproductive success.

Body Length (mm)

General Conclusions from Case Studies in Chinook

- Supplementation programs provide a boost in population abundance (survival advantage in hatchery)
- Hatchery adults have lower reproduction when spawning in nature in some cases, but decrease is slight overall
- Smaller, younger males (jacks) have lower reproductive success
- No effect detected when natural-origin fish mate with hatcheryorigin fish

Overall: Limited effects for integrated hatchery programs that use ~100% natural origin fish in broodstock

Results in Steelhead: Natural-origin broodstock produce offspring that reproduce better in nature (Ford et al. 2016, *PLOS One*)

Integrated vs. Segregated Programs

- Results support that integrated programs have lower risks to natural populations than segregated programs
- However, very few integrated hatchery programs with high percent of natural origin broodstock

Example from 25 Chinook Hatcheries

Hatchery Program

Credit: Rebekah Horn

Future Directions

- Additional studies needed that contrast integrated vs. segregated programs
- Evaluate differences after <u>hatchery reform</u> measures implemented
- Ensure genetic & life history diversity is maintained in natural populations
- Important that the breadth of RRS studies continue to expand across a wide range of salmonid species
- Evaluate the effect of annual environmental factors on reproductive success

Acknowledgments

Nez Perce Fisheries:

Jay Hesse Bill Young Jason Vogel Field support technicians

Columbia River Inter-Tribal Fish Commission:

Peter Galbreath
Janae Cole
Stephanie Harmon
Travis Jacobson
Lori Maxwell
Megan Moore
Vanessa Morman
Jeff Stephenson